

PREFER Project

PRoduct Environmental Footprint Enhanced by Regions
LIFE12 ENV/IT/000393

La *Product Environmental Footprint* dell'Asti Spumante d.o.c.g

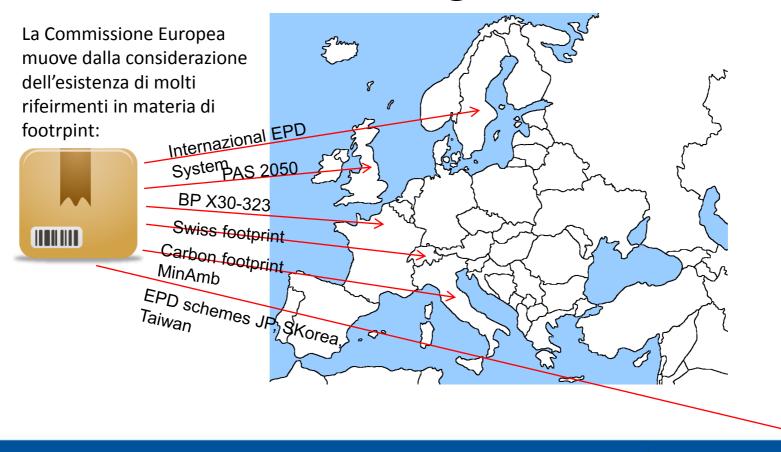
Dr. Andrea FONTANELLA - HSE Consultant ERGO srl Cell 338 4490271

mail andrea.fontanella@ergosrl.net

Consorzio dell'Asti d.o.c.g Isola d'Asti – 13/05/2017

II Progetto PREFER

- Si basa sulla sperimentazione della **metodologia PEF Product Environmental Footprint**, sviluppata dalla Commissione Europea al fine di valutare le performance ambientali dei beni e servizi durante il loro ciclo di vita (Raccomandazione 179/2013/EU)
- Il progetto PREFER ha lo scopo di testare la metodologia PEF sui prodotti di 8 cluster di alcune regioni italiane e in 3 cluster a livello europeo



La Metodologia PEF

La Metodologia PEF

Le metodologie PEF e OEF sono state sviluppate dal *Joint Research Centre* (*JRC*) dell'Unione Europea sulla base di metodi esistenti e ampiamente testati ed utilizzati con l'obiettivo di definire una metodologia comune a livello europeo per il calcolo degli impatti ambientali di prodotti, servizi ed organizzazioni.

Queste metodologie sono state sviluppate sulla base dell'International Reference Life Cycle Data System (ILCD) Handbook, così come su altri standard metodologici e documenti guida quali: (ISO 14040-44, PAS 2050, BP X30, WRI/WBCSD GHG protocol, Sustainability Consortium, ISO 14025, Ecological Footprint, etc.

La Metodologia PEF

La metodologia PEF si basa su un approccio LCA – Life Cycle Assessment

Per valutare correttamente la capacità di un prodotto di offrire migliori performance dal punto di vista ambientale occorre considerare TUTTI gli impatti che esso produce nell'arco dell'intero suo ciclo di vita

Dimostrare l'efficacia della metodologia europea dell'impronta ambientale (PEF) in diversi settori

Obiettivi del Progetto PREFER

Superare il problema delle limitate risorse umane e finanziarie a disposizione delle PMI facendo leva sull'approccio di cluster

Condividere una serie di strumenti, metodi e risorse a supporto delle PMI a livello di cluster

Supportare le PMI nell'applicazione della metodologia PEF e migliorare le performance ambientali dei loro prodotti

Partnership

- Istituto di Management Scuola Sant'Anna di Pisa (Coordinatore Beneficiario)
- Centrocot Centro Tessile Cotoniero e Abbigliamento Spa
- Consorzio per la tutela dell'Asti
- Distretto industriale Nocera Gragnano /Patto dell'Agro Spa
- ERVET Emilia Romagna
- Regione Lombardia
- Il progetto è condotto sotto l'egida della Rete CARTESIO (<u>www.retecartesio.it</u>)
- Il progetto PREFER ha un valore di oltre 1.500.000 euro, è iniziato ad ottobre 2013 e si concluderà a dicembre 2016.

Distretti coinvolti

- 1. Settore Cartario- Distretto cartario di Capannori
- 2. Settore Abbigliamento Distretto della moda Toscano
- 3. Settore Abbigliamento -Distretto di Varese
- 4. Settore agroalimentare Distretto di Nocera
- 5. Settore agroalimentare Distretto della produzione di pomodoro di Emilia Romagna e Lombardia
- 6. Settore calzaturiero Distretto di Forlì
- 7. Settore vinicolo Distretto di Asti
- 8. Settore caseario Distretto Lombardo del latte

La fase pilota della PEF a livello Europeo

La metodologia PEF, pubblicata dalla Commissione Europea con la Raccomandazione 179/2013, è ora in una fase pilota su 25 settori produttivi.

L'obiettivo è quello di definire regole settoriali (PEFCR – Product Environmental Footprint Category Rules) che declinino la metodologia base sulle peculiarità di specifici prodotti in modo da garantire l'omogeneità negli studi, nella valutazione degli impatti e nella comunicazione delle performance ambientali di prodotti omogenei.

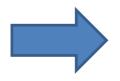
Le fasi dei progetti pilota PEF

- 1. PEF Screening Study
- 2. 1 st Draft PEFCR
- 3. Supporting Studies
- 4. Testing of Communication Vehicles
- 5. Final PEFCR
- 6. Approval of the PEFCR

Il PEFCR Pilot of Wine

Il progetto pilota sul vino è partito a Giugno 2014 e vede coinvolti come membri del segretariato tecnico:

- CEEV Comité Européen des Entreprises Vins
- Azienda Agricola Salchet
- CIVC Comité Interprofessionnel du Vin de Champagne
- CV-CNF Centre Vinicole-Champagne Nicolas Feuillatte
- ESCI-UPF UNESCO Chair in Life Cycle & Climate Change
- FEVE The European Container Glass Federation
- IAT Andalusian Institute of Technology
- MHCS Moët Hennessy Champagne Services
- Pernod Ricard Winemakers Spain
- Unione Italiana Vini



Il PEFCR Pilot of Wine – Il Prodotto Rappresentativo

Still wine	 53% red, 30% rosé and 17% white 92.7% conventional wine and 7.3% organic wine 57.3% packaged in glass bottles, 35.4% in bag in box, 4.0% in cubit, 2.9% in PET, 0.3% beverage carton and 0.2% in doypack/pouch 100% one-way packaging In the case of glass bottles: 67% with cork closure, 17% synthetic stoppers and 16% screw caps 84% transported and commercialized bottled (containers < 2 litres) and 16% in bulk (i.e. containers > 2 litres)
Sparkling and semi- sparkling wine	 78% sparkling and 22% semi-sparkling 44% produced with the Champenoise/Traditional method and 56% with the Charmat method Packaging: 100% bottled in glass bottles with natural cork closure 100% one-way packaging

Il PEFCR Pilot of Wine – Categorie Rilevanti

- Resource depletion water
- Eutrophication
- Acidification
- Climate change as the sum of fossil, biogenic (only methane) and land use and transformation

Il PEF Pilot of Wine – Benchmark

Impact category	Unit	Still wine	Sparkling wine
Climate Change	kg CO ₂ equivalent	1.40E+00	1.70E+00
Ozone Depletion	kg CFC-11 equivalent	3.60E-08	4.26E-08
Ecotoxicity for	CTUe (Comparative Toxic Unit for		
aquatic fresh water	ecosystems)	2.34E+01	2.04E+01
Human Toxicity -	CTUh (Comparative Toxic Unit for		
cancer effects	humans)	2.68E-08	2.40E-08
Human Toxicity –	CTUh (Comparative Toxic Unit for		
non-cancer effects	humans)	9.45E-02	1.01E-01
Particulate	kg PM _{2.5} equivalent		
Matter/Respiratory		4 225 02	4 625 02
Inorganics	. 5	1.23E-03	1.63E-03
Ionising Radiation –	kBq U ²³⁵ equivalent (to air)	9.45E-02	1.01E-01
human health effects	Les NIM VOO a surice land	9.45E-02	1.016-01
Photochemical Ozone Formation	kg NMVOC equivalent	5.35E-03	5.41E-03
Acidification	mol H. og		
	mol H+ eq	1.08E-02	1.22E-02
Eutrophication –	mol N eq	2.025.02	2.455.02
terrestrial		3.02E-02	3.45E-02
Eutrophication –	kg P equivalent	E 24E 0E	4 705 05
aquatic freshwater		5.24E-05	4.79E-05
Eutrophication –	kg N equivalent	2 205 02	2 405 02
aquatic marine	3	3.39E-03	3.49E-03
Resource Depletion –	m ³ water use related to local	3.27E-02	3.52E-02
water	scarcity of water	3.27E-UZ	3.5ZE-UZ
Resource Depletion –	kg antimony (Sb) equivalent	4.16E-04	3.63E-04
mineral, fossil	kg C (dofinit)		
Land Transformation	kg C (deficit)	1.69E+00	2.86E+00

Lo studio PEF dell'Asti Spumante Medio di Distretto

Il Campione

Il progetto ha visto coinvolte:

- 16 aziende agricole, per un totale di circa 170 ha di vigneto. Le aziende viticole sono per vocazionalità ambientale, per ordinamento colturale e per dimensione aziendale rappresentative della DOP Asti docg.
- 5 Cantine per le fasi di produzione mosto, fermentazione ed imbottigliamento, rappresentative della tipologia delle cantine presenti sul territorio. La somma di bottiglie equivalenti prodotta delle cantine è pari a circa il 30% della produzione annua della denominazione Asti docg

Unità di Analisi

L'unità di analisi è l'unità di misura delle prestazioni del sistema

Lo scopo è fornire un riferimento a cui legare i flussi in entrata ed in uscita.

Funzione fornita	Consumo moderato di una bevanda alcolica
Portata della funzione	0,75 l di vino Asti Spumante docg
Livello di qualità previsto	Temperatura media di servizio raccomandata di 8°C
Codice CPA	11.02.11 - Sparkling wine of fresh grapes
Flusso di riferimento	1 bottiglia da 75 cl di vino Asti Spumante docg

Flusso di riferimento

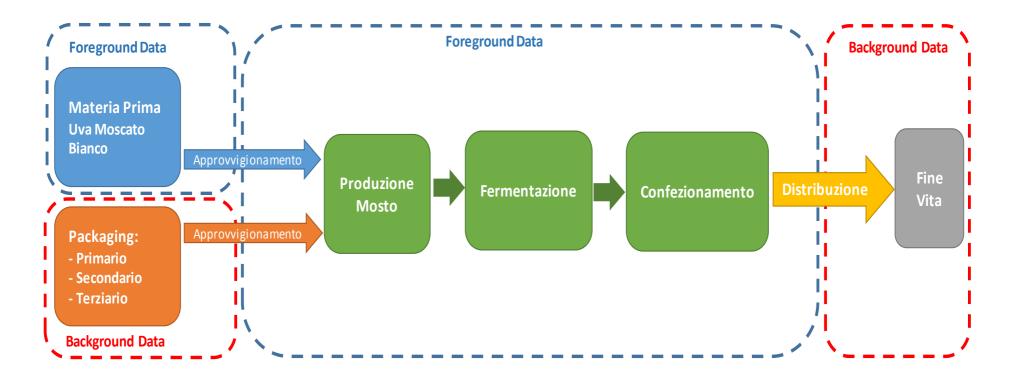
Il **flusso di riferimento** indica la quantità di prodotto necessaria per ottenere la funzione definita. Tutti i flussi di input e output dell'analisi fanno riferimento al flusso.

Vino	772,50 g
Bottiglia – vetro	764,13 g
Etichette – carta	1,23 g
Tappo – sughero	9,19 g
Gabbietta – Ferro	5,72 g
Capsulone - Alluminio	2,25 g
Confezione di distribuzione (per 1 bt) - Cartone	42,50 g

Confini del Sistema

I **Confini del Sistema** definiscono quali parti del ciclo di vita del prodotto e quali processi ad esse associati sono ricompresi nel sistema analizzato (ovvero quali parti sono necessarie perché il prodotto possa svolgere la sua funzione così come definita dall'unità di analisi).

I confini del sistema dovrebbero essere definiti secondo una logica di supplychain, ovvero includendo tutti le fasi significative del punto di vista ambientale, dall'estrazione della materie prime alla produzione, distribuzione, fase d'uso e fine vita del prodotto o servizio.



Confini del Sistema

Categorie d'Impatto e Metodo di Valutazione

Environmental Footprint Impact Category	Impact Assessment Model	Source
Climate Change	Bern model - Global Warming Potentials (GWP) over a 100 year time horizon.	Intergovernmental Panel on Climate Change, 2007
Ozone Depletion (OD)	EDIP model based on the ODPs of the World Meteorological Organisation (WMO)	WMO 1999
Ecotoxicity	USEtox model	Rosenbaum et al, 2008
Human Toxicity - cancer effects	USEtox model	Rosenbaum et al, 2008
Human Toxicity – non-cancer effects	USEtox model	Rosenbaum et al, 2008
Particulate Matter/Respiratory Inorganics	RiskPoll model	Rabl and Spadaro, 2004
Ionising Radiation – human health effects	Human Health effect model	Dreicer et al. 1995
Photochemical Ozone Formation	LOTOS-EUROS model	Van Zelm et al, 2008 as applied in ReCiPe
Acidification	Accumulated Exceedance model	Seppälä et al.,2006, Posch et al, 2008
Eutrophication – terrestrial	Accumulated Exceedance model	Seppälä et al.,2006, Posch et al, 2008
Eutrophication – aquatic	EUTREND model	Struijs et al, 2009 as implemented in ReCiPe
Resource Depletion – water	Swiss Ecoscarcity model	Frischknecht et al, 2008
Resource Depletion – mineral, fossil	CML2002 model	Van Oers et al 2002
Land Transformation	Soil Organic Matter (SOM) model	Milà i Canals et al, 2007

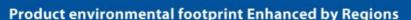
Inventario

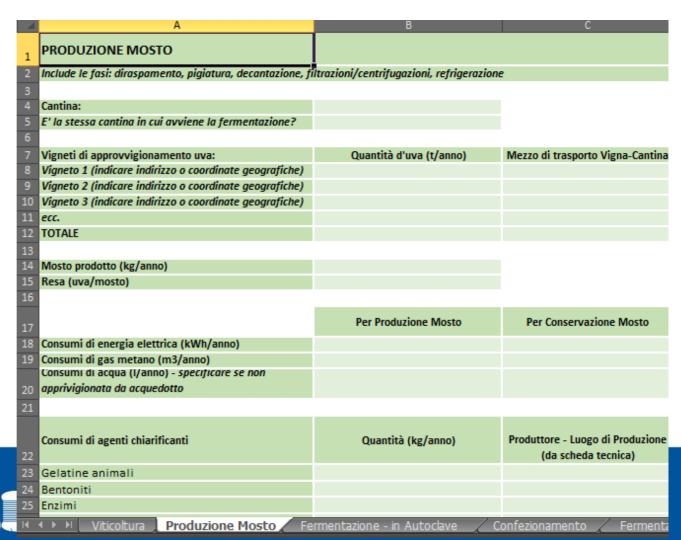
Come base per lo studio PEF deve essere realizzato un inventario di tutti gli input/output di materie/risorse energetiche significativi dal punto di vista ambientale e delle emissioni in aria, acqua e suolo per i processi che contribuiscono alla produzione del prodotto/servizio oggetto dello studio all'interno dei confini definiti.

Inventario - Dati

Tutte le risorse utilizzate e le emissioni associate al ciclo di vita del prodotto devono essere incluse nell'inventario:

- Acquisto e lavorazione delle materie prime;
- Produzione: consumi energetici, idrici, emissioni in aria e acqua, rifiuti e scarichi idrici, ecc.;
- Distribuzione del prodotto e immagazzinamento;
- Fase d'uso;
- Logistica;
- Fine vita.





3) Inventario – Checklist di raccolta dati

Checklist di raccolta dati, che si compone di 6 sezioni:

- Viticoltura;
- Produzione mosto;
- Fermentazione e Confezionamento;
- Materiali di packaging prodotto finito;
- Distribuzione

3) Inventario - Esempio

PROCESSO	Unità	Totale
VITICOLTURA		
Acqua da pozzo - Aziende Agricole	cm3	314,802
Acqua da acquedotto - Aziende Agricole	cm3	174,635
Diesel per Mezzi Agricoli	cm3	36,179
Fertilizzante – K	g	2,776
Fertilizzante – N	g	1,830
Fertilizzante – P	g	1,844
Sostanza Organica	g	1,116
Letame	g	13,548
Linea di difesa della coltura	g	13,147
CANTINA		
Lieviti*	mg	18,642
Sali Minerali di Ammonio	mg	210,118
Zucchero	g	30,803
Cremore di Tartaro*	mg	157,576
Acido Citrico	mg	23,003
Acido Tartarico	mg	11,246
Acqua da acquedotto - Produzione Mosto	cm3	159,917
Acqua da acquedotto - Conservazione Mosto	cm3	58,132
Acqua da acquedotto - Fermentazione	cm3	19,145
Acqua da acquedotto - Confezionamento	cm3	18,744
Acqua da pozzo - Confezionamento	1	1,255

3) Inventario – Qualità dei dati

E' stata condotta una valutazione della qualità dei dati inclusi nell'inventario secondo i seguenti sei criteri:

- Rappresentatività tecnologica
- Rappresentatività geografica
- Rappresentatività temporale
- Incertezza
- Completezza
- Incertezza dei parametri

3) Inventario – Qualità dei dati

I dati sono classificati in base a cinque livelli di qualità:

- Qualità eccellente
- Qualità molto buona
- Qualità buona
- Qualità sufficiente
- Qualità scarsa

I dati relativi ai processi e attività che rappresentano il **70**% dei contributi per ciascuna categoria di impatto devono raggiungere almeno un livello complessivo di "qualità buona".

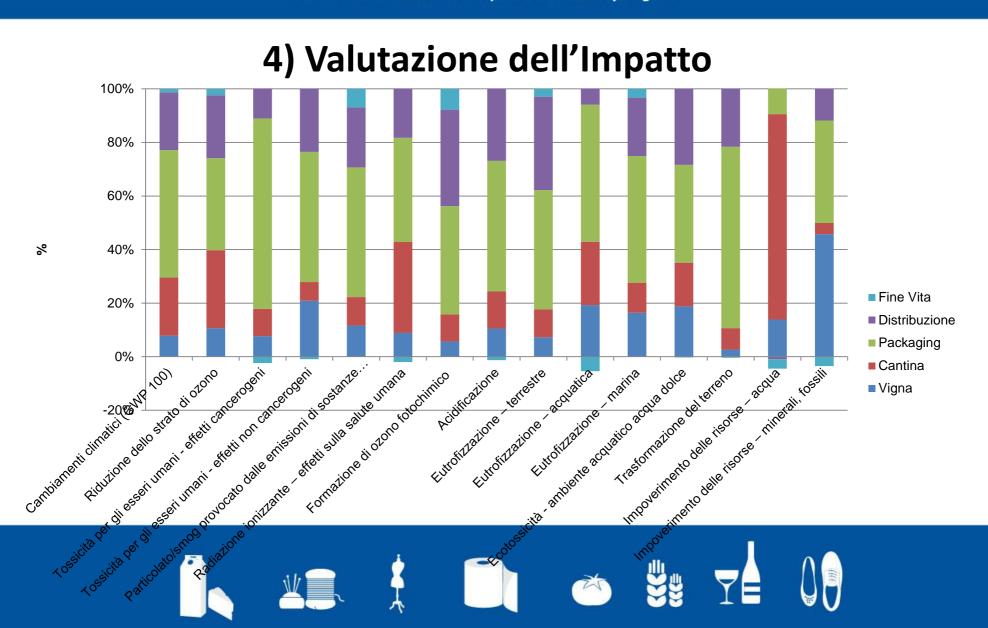
I dati inferiori alla valutazione "qualità media" non devono rappresentare più del 10% dei contributi per ciascuna categoria di impatto.

4) Valutazione dell'Impatto

Categoria d'impatto	Unità	Totale	Vigna	Cantina	Packaging	Distribu- zione	Fine Vita
Cambiamenti climatici (GWP 100)	kg CO2 eq	1,1154	0,0876	0,2420	0,5307	0,2404	0,0147
Riduzione dello strato di ozono	kg CFC-11 eq	1,89E-07	2,01E-08	5,50E-08	6,49E-08	4,43E-08	4,51E-09
Tossicità per gli esseri umani - effetti cancerogeni	CTUh	4,86E-08	3,72E-09	4,97E-09	3,46E-08	6,50E-09	-1,14E-09
Tossicità per gli esseri umani - effetti non cancerogeni	CTUh	1,97E-07	4,12E-08	1,39E-08	9,58E-08	4,83E-08	-1,87E-09
Particolato/smog provocato dalle emissioni di sostanze inorganiche	kg PM2.5 eq	7,30E-04	8,48E-05	7,78E-05	3,53E-04	1,64E-04	5,04E-05
Radiazione ionizzante – effetti sulla salute umana	kBq U235 eq	0,1104	0,0098	0,0374	0,0430	0,0224	-0,0022
Formazione di ozono fotochimico	kg NMVOC eq	0,0049	0,0003	0,0005	0,0020	0,0018	0,0004
Acidificazione	molc H+ eq	0,0079	0,0008	0,0011	0,0039	0,0022	-0,0001
Eutrofizzazione – terrestre	molc N eq	0,0176	0,0013	0,0018	0,0078	0,0061	0,0005
Eutrofizzazione – acquatica	kg P eq	1,72E-04	3,30E-05	4,07E-05	8,79E-05	1,94E-05	-9,32E-06
Eutrofizzazione – marina	kg N eq	0,0026	0,0004	0,0003	0,0012	0,0006	0,0001
Ecotossicità - ambiente acquatico acqua dolce	CTUe	6,4987	1,2191	1,0609	2,3748	1,8618	-0,0179
Trasformazione del terreno	kg C deficit	4,7820	0,1268	0,3836	3,2378	1,0536	-0,0198
Impoverimento delle risorse – acqua	m3 water eq	0,0045	0,0006	0,0034	0,0006	0,0000	-0,0002
Impoverimento delle risorse – minerali, fossili	kg Sb eq	7,16E-05	3,27E-05	3,02E-06	2,74E-05	1,09E-05	-2,51E-06

4) Valutazione dell'Impatto

Categoria d'impatto	Unità	Vigna	Cantina	Packaging	Distribuzione	Fine Vita
Cambiamenti climatici (GWP 100)	kg CO2 eq	7,86%	21,69%	47,58%	21,55%	1,32%
Riduzione dello strato di ozono	kg CFC-11 eq	10,65%	29,11%	34,38%	23,48%	2,39%
Tossicità per gli esseri umani - effetti cancerogeni	CTUh	7,65%	10,23%	71,12%	13,36%	-2,35%
Tossicità per gli esseri umani - effetti non cancerogeni	CTUh	20,87%	7,02%	48,56%	24,50%	-0,95%
Particolato/smog provocato dalle emissioni di						
sostanze inorganiche	kg PM2.5 eq	11,62%	10,66%	48,38%	22,43%	6,91%
Radiazione ionizzante – effetti sulla salute umana	kBq U235 eq	8,87%	33,93%	38,93%	20,28%	-2,01%
Formazione di ozono fotochimico	kg NMVOC eq	5,70%	10,09%	40,40%	36,06%	7,75%
Acidificazione	molc H+ eq	10,52%	13,83%	48,77%	28,16%	-1,28%
Eutrofizzazione – terrestre	molc N eq	7,27%	10,43%	44,47%	34,90%	2,93%
Eutrofizzazione – acquatica	kg P eq	19,24%	23,72%	51,16%	11,30%	-5,43%
Eutrofizzazione – marina	kg N eq	16,39%	11,21%	47,31%	21,85%	3,24%
Ecotossicità - ambiente acquatico acqua dolce	CTUe	18,76%	16,32%	36,54%	28,65%	-0,28%
Trasformazione del terreno	kg C deficit	2,65%	8,02%	67,71%	22,03%	-0,41%
Impoverimento delle risorse – acqua	m3 water eq	13,89%	76,71%	13,90%	-0,93%	-3,56%
Impoverimento delle risorse – minerali, fossili	kg Sb eq	45,72%	4,22%	38,27%	15,30%	-3,50%



4) Valutazione dell'Impatto – Qualità dei dati

Categoria d'Impatto	Qualità Buona	Qualità Sufficiente	Qualità Scarsa
Cambiamenti climatici (GWP 100)	88,47%	11,38%	0,14%
Riduzione dello strato di ozono	82,38%	17,56%	0,06%
Tossicità per gli esseri umani - effetti cancerogeni	92,01%	7,87%	0,11%
Tossicità per gli esseri umani - effetti non cancerogeni	81,59%	18,30%	0,11%
Particolato/smog provocato dalle emissioni di sostanze inorganiche	79,25%	20,60%	0,15%
Radiazione ionizzante – effetti sulla salute umana	84,41%	15,41%	0,18%
Formazione di ozono fotochimico	85,03%	14,88%	0,09%
Acidificazione	87,94%	11,92%	0,14%
Eutrofizzazione – terrestre	86,46%	13,44%	0,10%
Eutrofizzazione – acquatica	79,47%	20,26%	0,26%
Eutrofizzazione – marina	74,51%	25,38%	0,11%
Ecotossicità - ambiente acquatico acqua dolce	78,66%	21,16%	0,18%
Trasformazione del terreno	92,94%	6,92%	0,14%
Impoverimento delle risorse – acqua	82,12%	17,43%	0,46%
Impoverimento delle risorse – minerali, fossili	55,98%	43,60%	0,42%

5) Interpretazione

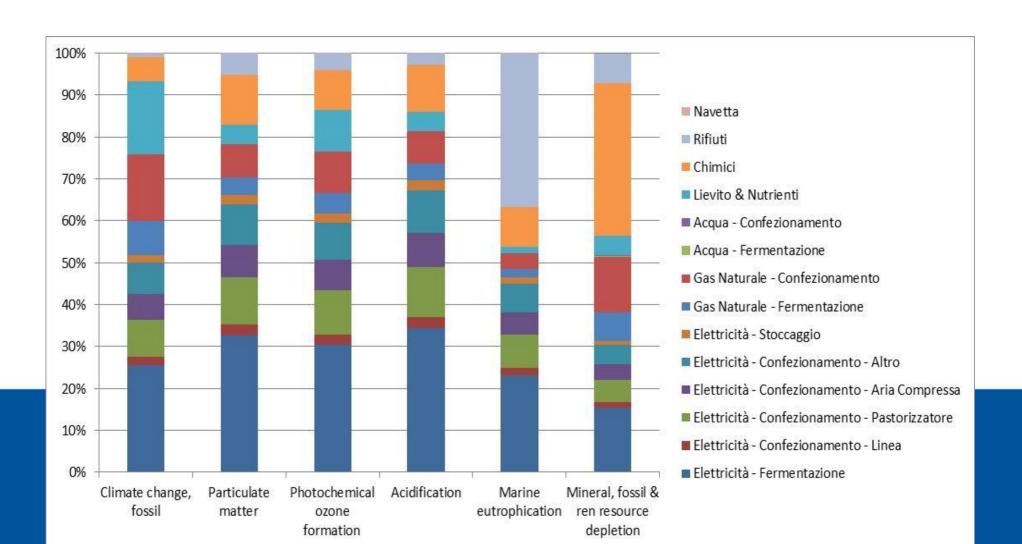
- Il contributo delle singole fasi del ciclo di vita all'impatto ambientale complessivo nelle diverse categorie d'impatto si distribuisce in modo equivalente: il packaging di distribuzione del vino risulta essere quello con il contributo maggiore all'impatto complessivo.
- Facendo un focus sul solo packaging, l'80% circa del contributo totale del packaging deriva dalla sola bottiglia in vetro.
- Per quanto riguarda gli impatti della fase di cantina, circa il 60% è attribuibile ai soli consumi energetici.
- I valori negativi di impatto che si rilevano della fase di "fine vita" sono riconducibili ai benefici derivanti dal riciclo della bottiglia in vetro.

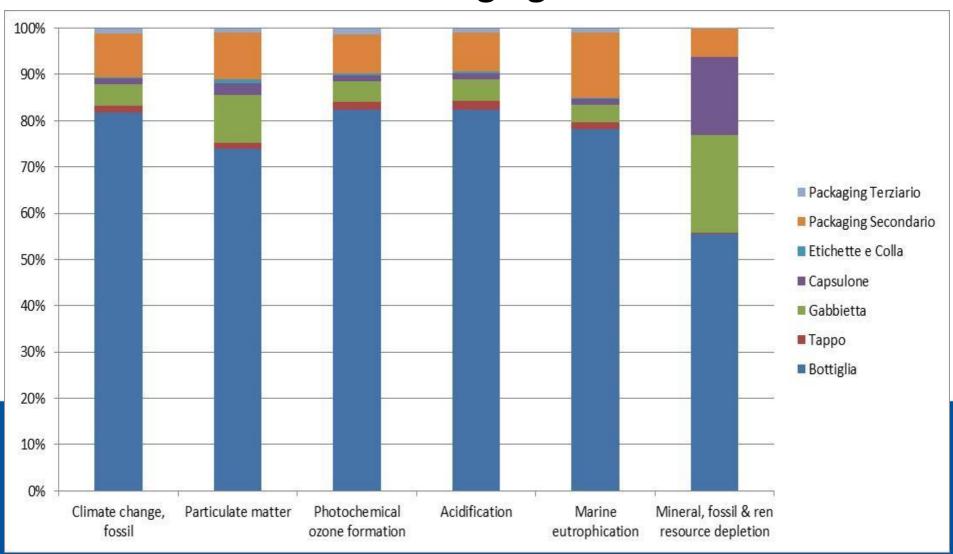
Fase II: Lo studio PEF dell'Asti Spumante di tre Aziende del Consorzio

La PEF delle Aziende del Distretto

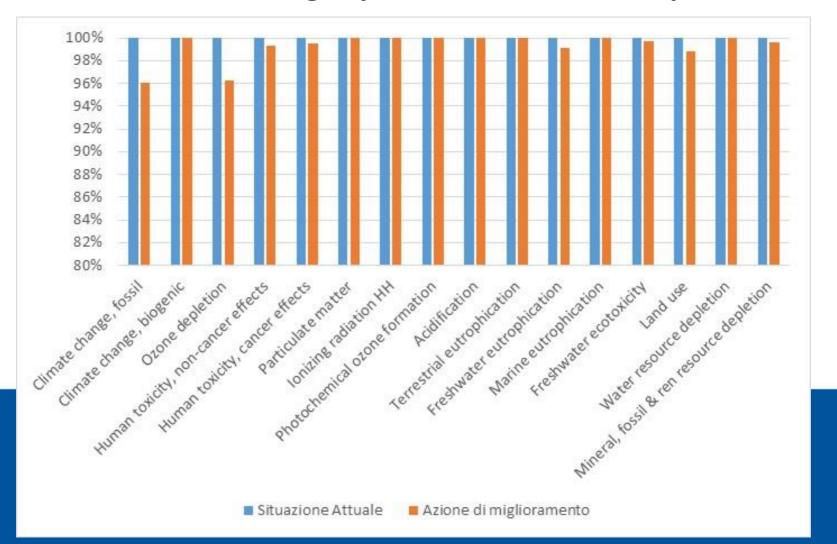
A valle dello studio medio di Distretto, 3 Aziende hanno intrapreso uno studio PEF specifico per il loro prodotto, beneficiando dell'esperienza maturata, degli strumenti sviluppati e dati raccolti nella prima fase del progetto.

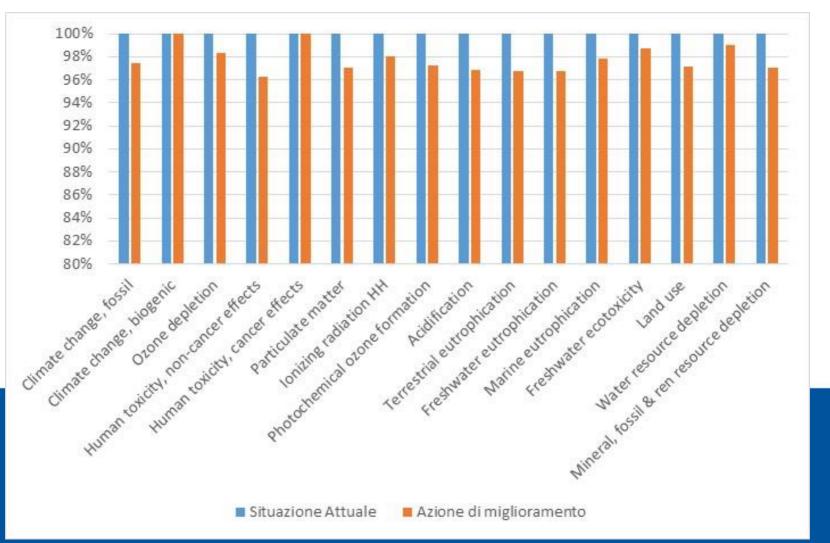
Le Aziende hanno quantificato gli impatti dei proprio prodotti, identificato possibili ambiti di miglioramento e valutato i possibili benefici ambientali derivanti dall'implementazione di specifici interventi.





Esempio: risultati di dettaglio dagli studi sulle singole aziende - Produzione -




Esempio: simulazioni di azioni di miglioramento

- Riduzione dei consumi di gas per ottimizzazione impianto termico -

Esempio: simulazioni di azioni di miglioramento - Riduzione del peso delle bottiglie -

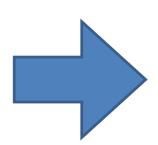
Made Green in Italy



Made Green in Italy

Un'interessante prospettiva Italiana è il Made Green in Italy, uno schema nazionale volontario per la valutazione e la comunicazione dell'impronta ambientale dei prodotti (inclusi i prodotti intermedi e semilavorati) la cui gestione è del Ministero dell'ambiente e della tutela del territorio e del mare, istituito dalla Legge 221/2015 art.21

Lo schema adotta la metodologia Product Environmental Footprint (PEF) per la determinazione dell'impronta ambientale dei prodotti così come definita nella raccomandazione 2013/179/UE della Commissione, del 9 aprile 2013.



Adesione

 Possono chiedere l'adesione allo schema i produttori di prodotti (inclusi i prodotti intermedi o semilavorati) classificabili come Made in Italy

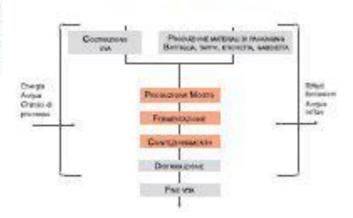
MADE IN ITALY:

merci la cui ultima lavorazione sostanziale ed economicamente giustificata conclusa con la fabbricazione di un prodotto nuovo o che abbia rappresentato una fase importante del processo di fabbricazione venga svolta in Italia.

Made Green in Italy - Obiettivi

- Promuovere l'adozione di tecnologie e disciplinari di produzione innovativi che consentano di ridurre gli impatti ambientali dei prodotti lungo tutto il ciclo di vita.
- Rafforzare l'immagine, il richiamo e l'impatto comunicativo che distingue le produzioni italiane, associandovi aspetti di qualità ambientale.
- Rafforzare la qualificazione ambientale dei prodotti agricoli.
- Garantire l'informazione riguardo alle esperienze positive sviluppate in progetti precedenti.

Scheda di distretto


Scheda di distretto

IL PRODOTTO MEDIO DEL DISTRETTO

Il prodotto cui e stato condotto lo studio PE F e 1 bottiglia da 0,751 di l'Asti Spumante doog. L'Asti Spumante doog o un vino bianco, dolco, aromatico, spumante, ottenuto dalle uve Moscato bianco coltivate nell'area a doog nelle provincie di Cunso, Asti ed Alessandria. Il prodotto e cosi cost come descritto dal disciplinare di produzione:

- · Spuma: fine, persistente;
- Colore: da giallo paglierino a dorato assal tenue;
- · Odore: caratterístico, spiccato, delicato;
- . Sapore: gromatico, caratterístico, dolce, equilibrato;
- Titolo alcolometrico volumico totale minimo:
 12% vol di cui svolto compreso nei limiti dal 8% vol all'9% vol;
- · Acidita totale minima: 6 g/l;
- Estratto non riduttore mínimo: 17 g/l.

I CONFINI DEL SISTEMA

RISULTATI DI IMPATTO AMBIENTALE

Grazie per l'attenzione

Dr. Andrea FONTANELLA - HSE Consultant ERGO srl Cell 338 4490271

mail <u>andrea.fontanella@ergosrl.net</u>

