

Applicazione di PEF Product Environmental Footprint alla produzione di vino Asti Spumante d.o.c.g

Studio realizzato nell'ambito del progetto PREFER
PRoduct Environmental Footprint Enhanced by Regions

Dott. Agr. Daniele EBERLE – Consorzio dell'Asti Cell 335 1446923 mail d.eberle@libero.it

Asti, 23 maggio 2017

Le Tre Sfere della Sostenibilità

Capacità dell'umanità di soddisfare le esigenze **presenti** senza compromettere la possibilità delle **generazioni future** di sopperire alle proprie" (Rapporto Brundtland del 1987)

Sociale - Ambientale

Legislazione ambientale Gestione delle risorse naturali locali e globali

AMBIENTALE

Uso delle risorse naturali Gestione ambientale Prevenzione inquinamento (aria, acqua, terra, rifiuti)

Ambientale - Economica

Efficienza energetica Sussidi/Incentivi per l'uso delle risorse naturali

Sostenible

SOCIALE

Stile di vita Educazione Comunità

Pari opportunità

ECONOMICO

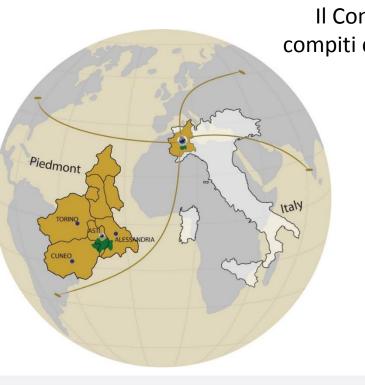
Reddito Riduzione dei costi Crescita economica Ricerca e Sviluppo

Economico – Sociale

Commercio equo Etica del commercio Diritti dei lavoratori

Tratto da Valutazione della sostenibilità Università del Michigan 2002

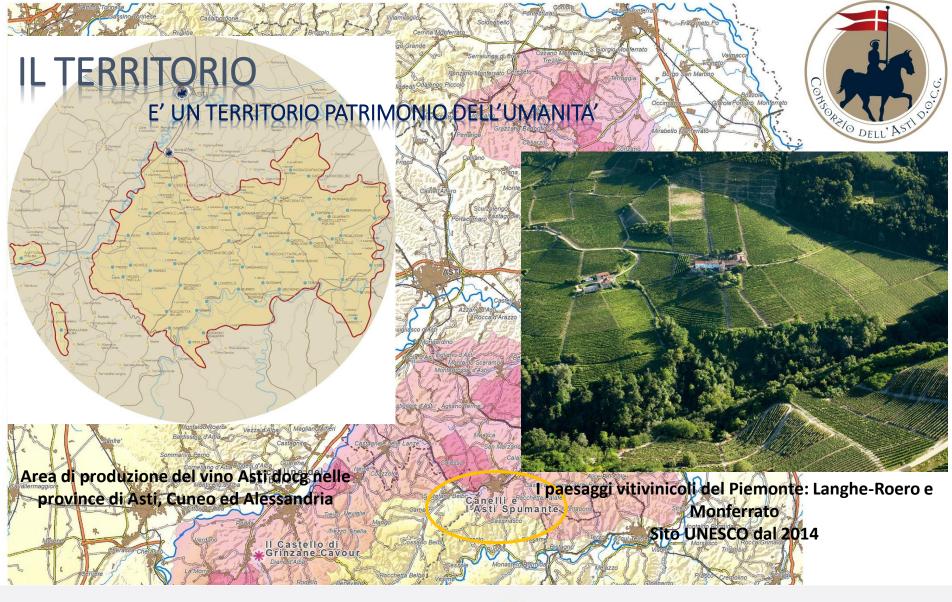
52 comuni


4000 viticoltori

9700 ha vitati

LA DENOMINAZIONE

E' UNA DENOMINAZIONE DI ORIGINE STORICA

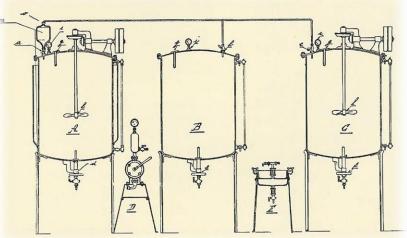


Il Consorzio dell'Asti viene fondato il 17 dicembre del 1932. I compiti del Consorzio sono tra gli altri: "svolgere tutto quanto è ritenuto necessario per la tutela e la valorizzazione dell'immagine dell'Asti e del Moscato d'Asti.»

La denominazione Asti doc nasce nel 1967 viene convertita a Asti docg nel 1993 Sono disciplinate due tipologie di vino "Asti» o "Asti spumante" e "Moscato d'Asti» L'area di produzione interessa

PLV 109 M € (valore medio annuo della produzione di uva)

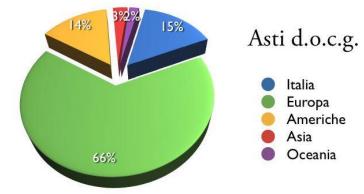
LA STORIA PIEMONTESE DEL MOSCATO BIANCO E' LA CULLA DELLA ENOLOGIA ITALIANA

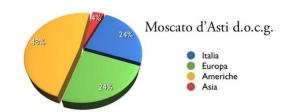


Federico Martinotti alla fine del 1800 è direttore della Regia Stazione Enologica di Asti e ai primi del '900 mette a punto l'attuale metodo per l'ottenimento dell'Asti Spumante.

Disegno originale di Martinotti del 1895 allegato al brevetto

I NUMERI DELL'ASTI


La denominazione **Asti docg** mette in commercio mediamente ogni anno


100 M bottiglie

E' UNO DEI PRODOTTI MADE IN ITALY PIÙ ESPORTATI

Asti spumante
80 M bottiglie
20 M bottiglie

Il mercato principale è l'Export USA e Germania

LE CARATTERISTICHE DELL' ASTI

descrittore

Asti Spumante

Moscato d'Asti

		100							
		1					estratto		
						ac tot	non		
		3			svolto %	minima	riduttore		
spuma	colore	odore	sapore	TAV % vol	vol	g/L	g/L	pressione bar	peso bottiglia g
fine e	da giallo	caratteristico,	aromatico,	min 11,5%	da 6,0% a	4,5	15	mimino 3,5	non inferiore a 630 g fino a
persistente	paglierino a	delicato	caratteristico,		9,5%			bar	900 g (deroga a 600 g se
	dorato assai		dolce,						vetro riciclato non inf 85%)
	tenue		equilibrato						
	paglierino	caratteristico e	dolce,	min 11,0%	da 4,5% a	4,5	15	non superiore	da 470 g fino a 800 g
	giallo più o	fragrante di	aromatico,	· Contraction	6,5%	26.1		a 2,5 bar	
	meno	Moscato	caratteristico,	is.		/ 11			
	intenso		talvolta vivace	(50)					

Il Progetto PREFER

- Si basa sulla sperimentazione della **metodologia PEF Product Environmental Footprint**, sviluppata dalla Commissione Europea al fine di valutare le performance ambientali dei beni e servizi durante il loro ciclo di vita (Raccomandazione 179/2013/EU)
- Il progetto PREFER ha lo scopo di testare la metodologia PEF sui prodotti di 8 cluster di alcune regioni italiane e in 3 cluster a livello europeo

I Prodotti analizzati nel progetto PREFER

Nell'ambito del progetto PREFER, vengono analizzati gli impatti ambientali dei seguenti prodotti:

- la carta del Distretto cartario di Lucca
- la pelle del Distretto della moda toscano
- i tessuti del Distretto tessile lombardo
- le conserve del Distretto del pomodoro da industria Emilia Romagna e Lombardia
- le scarpe del Distretto calzaturiero di San Mauro Pascoli
- il Distretto vitivinicolo astigiano dell'Asti Spumante
- la pasta del Distretto agroalimentare Nocera Gragnano
- le travi del distretto del legno lombardo

Il progetto ha avuto un approccio distrettuale ed ha visto coinvolte:

- 16 aziende agricole, per un totale di circa 170 ha di vigneto. Le aziende viticole sono per vocazionalità ambientale, per ordinamento colturale e per dimensione aziendale rappresentative della DOP Asti docg.
- 5 Cantine per le fasi di produzione mosto, fermentazione ed imbottigliamento, rappresentative della tipologia delle cantine presenti sul territorio. La somma di bottiglie equivalenti prodotta delle cantine è pari a circa il 30% della produzione annua della denominazione Asti doc

Applicazione di PEF Product Environmental Footprint agli altri Distretti

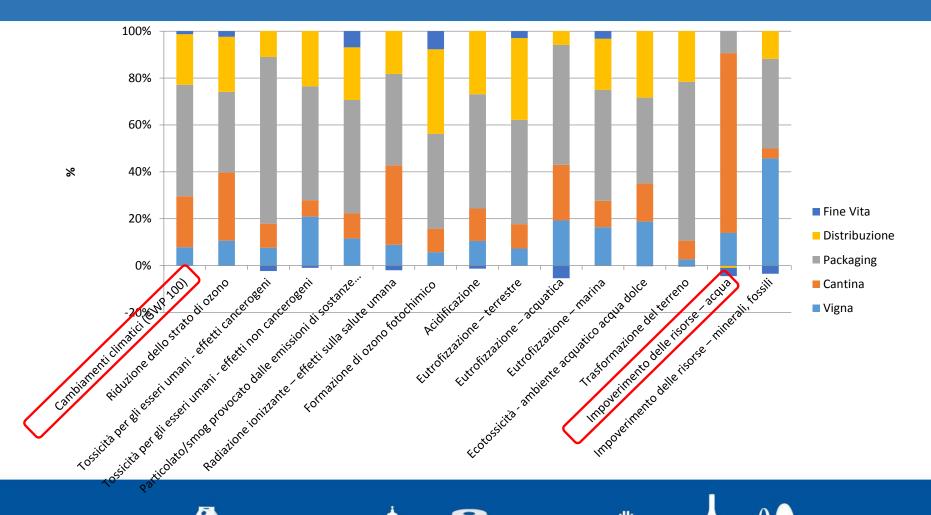
II PARTE

Dott. Agr. Daniele EBERLE – Consorzio dell'Asti Cell 335 1446923 mail d.eberle@libero.it

Asti, 23 maggio 2017

Risultati dell'analisi degli impatti per 1 bottiglia da 750 mL

Categoria d'impatto	Unità	Totale	Vigna	Cantina	Packaging	Distribu- zione	Fine Vita
Cambiamenti climatici (GWP 100)	kg CO2 eq	1,1154	0,0876	0,2420	0,5307	0,2404	0,0147
Riduzione dello strato di ozono	kg CFC-11 eq	1,89E-07	2,01E-08	5,50E-08	6,49E-08	4,43E-08	4,51E-09
Tossicità per gli esseri umani - effetti cancerogeni	CTUh	4,86E-08	3,72E-09	4,97E-09	3,46E-08	6,50E-09	-1,14E-09
Tossicità per gli esseri umani - effetti non cancerogeni	CTUh	1,97E-07	4,12E-08	1,39E-08	9,58E-08	4,83E-08	-1,87E-09
Particolato/smog provocato dalle emissioni di sostanze inorganiche	kg PM2.5 eq	7,30E-04	8,48E-05	7,78E-05	3,53E-04	1,64E-04	5,04E-05
Radiazione ionizzante – effetti sulla salute umana	kBq U235 eq	0,1104	0,0098	0,0374	0,0430	0,0224	-0,0022
Formazione di ozono fotochimico	kg NMVOC eq	0,0049	0,0003	0,0005	0,0020	0,0018	0,0004
Acidificazione	molc H+ eq	0,0079	0,0008	0,0011	0,0039	0,0022	-0,0001
Eutrofizzazione – terrestre	molc N eq	0,0176	0,0013	0,0018	0,0078	0,0061	0,0005
Eutrofizzazione – acquatica	kg P eq	1,72E-04	3,30E-05	4,07E-05	8,79E-05	1,94E-05	-9,32E-06
Eutrofizzazione – marina	kg N eq	0,0026	0,0004	0,0003	0,0012	0,0006	0,0001
Ecotossicità - ambiente acquatico acqua dolce	CTUe	6,4987	1,2191	1,0609	2,3748	1,8618	-0,0179
Trasformazione del terreno	kg C deficit	4,7820	0,1268	0,3836	3,2378	1,0536	-0,0198
Impoverimento delle risorse – acqua	m3 water eq	0,0045	0,0006	0,0034	0,0006	0,0000	-0,0002
Impoverimento delle risorse – minerali, fossili	kg Sb eq	7,16E-05	3,27E-05	3,02E-06	2,74E-05	1,09E-05	-2,51E-06



Valutazione dell'Impatto

Conclusioni dello studio PEF sul Distretto dell'Asti Spumante

- Il contributo delle singole fasi del ciclo di vita all'impatto ambientale complessivo nelle diverse categorie d'impatto si distribuisce in modo equivalente: il **packaging di distribuzione** del vino risulta essere quello con il contributo maggiore all'impatto complessivo.
- Facendo un focus sul solo packaging, **l'80%** circa del contributo totale del packaging deriva dalla sola **bottiglia in vetro**.
- Per quanto riguarda gli impatti della fase di cantina, circa il **60%** è attribuibile ai soli consumi energetici.
- I valori negativi di impatto che si rilevano della fase di "fine vita" sono riconducibili ai benefici derivanti dal riciclo della bottiglia in vetro.

Valutazione dell'Impatto nei Distretti Life Prefer

		Asti	Pasta	Pomodoro
Categoria d'impatto	Unità	1 bgt da 750 mL	1 sc da 500 g	1 kg passata
Cambiamenti climatici (GWP 100)	kg CO2 eq	1,12	0,81	1,27
Formazione di ozono fotochimico	kg NMVOC eq	0,005	0,0008	
Acidificazione	molc H+ eq	0,008	0,349	0,009
Eutrofizzazione – terrestre	molc N eq	0,02		0,02
Trasformazione del terreno	kg C deficit	4,78		131
Impoverimento delle risorse – acqua	m3 water eq	0,005	0,001	1,32
Impoverimento delle risorse – minerali, fossili	kg Sb eq	0,0001	0,003	

Valutazione dell'Impatto nei Distretti Life Prefer

		Asti	Distreto tessile Iombardo	Distretto calzaturiero San Mauro Pascoli	Distretto della moda toscano	Distretto cartario di Lucca
Categoria d'impatto	Unità	1 bgt da 750 mL	1 tovaglia in cotone 6 posti	1 paio di scarpe da donna in pelle	1 paio di scarpe da uomo in pelle	1 kg di carta igienica
Cambiamenti climatici (GWP 100)	kg CO2 eq	1.12	92.50	24.50	15.29	3.53
Formazione di ozono fotochimico	kg NMVOC eq	0.005		0.060	0.062	19.500
Acidificazione	molc H+ eq	0.008		0.200	0.020	0.045
Eutrofizzazione – terrestre	molc N eq	0.0176				
Trasformazione del terreno	kg C deficit	4.78				
Impoverimento delle risorse – acqua	m3 water eq	0.005	2636.0	6.1	0.6	9.6
Impoverimento delle risorse – minerali, fossili	kg Sb eq	7.16E-05				

E altri metodi di valutazione della sostenibilità del settore vitivinicolo

ETICHETTA VIVA PRODOTTO/ORGANIZZAZIONE PER IL MERCATO INTERNAZIONALE

Equalitas.

Nasce la sostenibilità del vino italiano.

EQUALITAS

MOVIMENTO DI STAKEHOLDER CHE HA L'OBIETTIVO DI AGGREGARE LE IMPRESE DEL SETTORE VITIVINICOLO PER UNA

VISIONE OMOGENEA E CONDIVISA DELLA SOSTENIBILITÀ

EQUALITAS

EQUALITAS - COMPAGINE SOCIETARIA

EQUALITAS NASCE NEL 2015

EQUALITAS

PUNTI CHIAVE DELLA NORMA

APPROCCIO: «AZIENDA» «VINO» «TERRITORIO» BUONE PRATICHE:
AGRICOLE;
DI LAVORAZIONE;
SOCIALI;
ECONOMICHE;
DI COMUNICAZIONE.

INDICATORI MISURABILI.

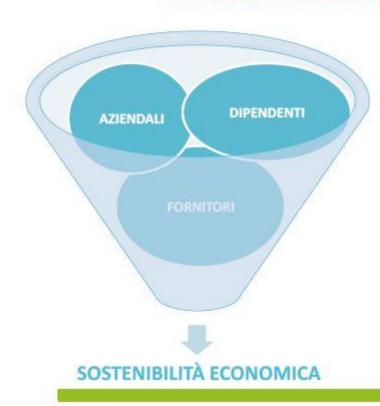
INDICATORI MISURABILI.

EQUALITAS

BUONE PRATICHE DI LAVORAZIONE

Buone pratiche agricole:

- Gestione del suolo;
- Gestione della fertilità;
- · Irrigazione;
- Gestione della pianta;
- · Gestione della difesa;
- · Gestione della vendemmia;
- Gestione della biodiversità;
- Divieto diserbo nell'inter-fila;
- Esclusione di fitofarmaci pericolosi.


Buone pratiche di cantina e imbottigliamento:

- Raccolta, vinificazione e imbottigliamento;
- Detersione e sanitizzazione locali e attrezzature;
- Packaging.

EQUALITAS

BUONE PRATICHE ECONOMICHE

Buone pratiche economiche aziendali:

- Controllo di gestione;
- Dimostrazione degli investimenti economici già sostenuti e che saranno sostenuti per la sostenibilità.

Buone pratiche economiche verso i dipendenti:

- Piano di crescita dei lavoratori (retribuzioni, equità delle stesse, etc.);
- Turn-over;
- Incentivazione economica anche in funzione del raggiungimento di obiettivi di miglioramento ambientale e sociale;
- Incontri con la proprietà.

Buone pratiche economiche verso i fornitori:

- Definire criteri per l'equo prezzo dei prodotti acquistati;
- Adeguamento alle nuove normative sui termini di pagamento massimi tollerabili.

EQUALITAS

BUONE PRATICHE SOCIALI

Lavoratori:

- Diritti lavoratori;
- Qualifiche coerenti con le mansioni svolte;
- L'organizzazione promuove le pari opportunità e il lavoro per i giovani;
- Non vengono fatte discriminazioni;
- Welfare;
- Questionari di monitoraggio e soddisfazione.

Formazione:

- Piano di formazione del personale;
- Condivisione della formazione con i lavoratori e registrazione della stessa;
- Formazione anche ai terzisti.

Relazioni con il territorio:

 Questionario ai confinanti almeno ogni 3 anni al fine di raccogliere informazioni utili a migliorare i rapporti di convivenza.

EQUALITAS

BUONE PRATICHE DI COMUNICAZIONE

Politica:

 Regole definite per assicurare comunicazione dimostrabile, veritiera e trasparente.

Bilancio di sostenibilità:

- Bilancio in relazione alle attività svolte in materia di sostenibilità, agli obiettivi raggiunti e ai miglioramenti programmati;
- Dati resi disponibili a tutti gli stakeholder.

Dichiarazione di conformità:

 L'Organizzazione è autorizzata a dichiararsi "AZIENDA SOSTENIBILE" nelle forme previste.

EQUALITAS

Gli obiettivi del progetto **VIVA**

"La Sostenibilità della Vitivinicoltura in Italia" sono quelli di migliorare le prestazioni di sostenibilità della filiera vitivinicola attraverso l'analisi di quattro indicatori: Aria, Acqua, Territorio, Vigneto

Il progetto nasce nel 2011 e si conclude nel 2014 (fase pilota) 2014 stesura del primo disciplinare 2016 disciplinare VIVA 2.0

DISCIPLINARE

Il Ministero dell'Ambiente e della Tutela del Territorio e del Mare, nell'ambito del progetto VIVA "La Sostenibilità della Vitivinicoltura in Italia", con la collaborazione del:

- Centro di Ricerca Opera per la sostenibilità in agricoltura dell'Università Cattolica del Sacro Cuore;
- Centro di Competenza Agroinnova dell'Università di Torino (2011-2014).

Ha elaborato un disciplinare per la misura delle prestazioni di sostenibilità della filiera vite-vino. Il disciplinare è composto da 4 documenti tecnici per l'analisi dei quattro indicatori da parte delle aziende – ARIA, ACQUA, TERRITORIO E VIGNETO e da un Allegato contenente le procedure di verifica per gli enti certificatori.

Al fine di uniformare il più possibile le metodologie di applicazione a livello nazionale e di permettere l'utilizzo del materiale messo a punto nell'ambito del progetto VIVA, il Ministero dell'Ambiente mette a disposizione dei richiedenti il disciplinare e gli eventuali successivi aggiornamenti sulla base dell'evoluzione delle normative europee ed internazionali in materia.

ARIA

L'indicatore ARIA esprime l'impatto che la produzione di uno specifico prodotto (CFP) e/o l'insieme delle attività aziendali (GHGI) hanno sul cambiamento climatico.

ACQUA

L'impronta idrica esprime il volume totale di acqua dolce consumata e può essere riferita sia all'azienda nella sua totalità sia ad una singola bottiglia di vino da 0,75 l. È un indicatore del consumo di acqua dolce che tiene conto dell'acqua consumata e inquinata in vigneto ed in cantina per la produzione del vino.

VIGNETO

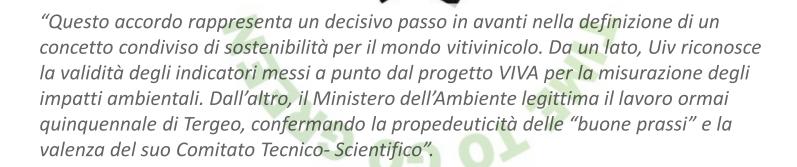
L'indicatore VIGNETO prende in considerazione le pratiche di gestione agronomica del vigneto ed in particolare valuta l'utilizzo degli agrofarmaci e le relative conseguenze sui corpi idrici e sul suolo. Analizza inoltre gli aspetti legati alla biodiversità, alla gestione del suolo e alla fertilità. L'indicatore può essere elaborato sia considerando l'intera superficie aziendale, che la superficie dedicata alla produzione di uno specifico prodotto.

TERRITORIO

Nel panorama complessivo dell'agricoltura italiana, il paesaggio disegnato dalla coltivazione della vite ha una importanza fondamentale ed è già oggetto di tutela come ad esempio nella zona del Prosecco nel Trevigiano, nel Collio e Colli Orientali del Friuli o, addirittura come nel caso delle Langhe, Roero e Monferrato, riconosciute come patrimonio dell'umanità.

ETICHETTA VIVA ORGANIZZAZIONE

ETICHETTA VIVA DI PRODOTTO



ETICHETTA VIVA PRODOTTO/ORGANIZZAZIONE PER IL MERCATO INTERNAZIONALE

Un'intesa che sancisce la collaborazione tra i due progetti TERGEO e VIVA

UIV e Ministero dell'Ambiente uniti per la sostenibilità

Maggio 2017

Il Consorzio dell'Asti vi ringrazia per

l'attenzione

Dott. Agr. Daniele EBERLE – Consorzio dell'Asti

Cell 335 1446923

mail d.eberle@libero.it

Ringraziamenti:

Prof. Fabio IRALDO Scuola Superiore Sant'Anna Dr. Andrea FONTANELLA HSE Consultant ERGO srl

